
NASMI'M-1999-208781

t User's Guide for ENSAERO-FE
Parallel Finite Element Solver

b

Lloyd B. Eldred and Gum l? Guruswamy

April 1999

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA's scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA's institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoreti-
cal analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA's counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent
of graphic presentations.

TECHNICAL MEMORANDUM. Scientific and
technical findings that are preliminary or of
specialized interest, e g , quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer-
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA's mission.

Specialized services that complement the STI
Program Office's diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

Access the NASA STI Program Home Page at
http://www. sti. nasa. gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA Access Help
Desk at (301) 621-0134

Telephone the NASA Access Help Desk at
(30 1) 62 1-0390

Write to:
NASA Access Help Desk
NASA Center for Aerospace Information
7 121 Standard Drive
Hanover, MD 21 076- 1320

NASNTM-1999-208781

User’s Guide for ENSAERO-FE \

. Parallel Finite Element Solver
Lloyd B. Eldred and Guru I? Guruswamy
Ames Research Center; Mofsett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

April 1999

Available from:

NASA Center for Aerospace Information
7 12 1 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22 161

(703) 487-4650

.

User’s Guide for ENSAERO - FE
Parallel Finite Element Solver

Lloyd B. Eldred and Guru P. Guruswamy
Ames Research Center

Summary

A high fidelity parallel static structural analysis capability is created and interfaced to the multi
disciplinary analysis package ENS AERO-MPI of Ames Research Center. This new module
replaces ENSAERO’s lower fidelity simple finite element and modal modules. Full aircraft struc-
tures may be more accurately modeled using the new finite element capability. Parallel computa-
tion is performed by breaking the full structure into multiple substructures. This approach is
conceptually similar to ENSAERO’s multizonal fluid analysis capability. The new substructure
code is used to solve the structural finite element equations for each substructure in parallel. NAS-
TRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to
create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each
substructure. The new parallel code then uses an iterative preconditioned conjugate gradient
method to solve the global structural equations for the substructure boundary nodes.

Introduction

Accurate structural modeling of a real aircraft by discretization has constraints that are
completely independent from those faced by the aerodynamics discipline. A structural model
focuses on the main internal features of the aircraft: the wing’s spars and ribs and the fuselage’s
bulkheads and stringers. An aircraft aerodynamic model focuses on critical aerodynamic features:
regions of separation, shocks, etc. These major features of interest are completely unrelated to
each other.

An attempt at using common meshes is at best doomed to inefficiency, and more likely to failure.
A much more efficient and powerful approach is to interface the highest fidelity single discipline
technologies available. ENSAERO (refs. 1-3) implements the Reynolds averaged thin-layer
Navier-Stokes equations. NASTRANs element library allows the accurate finite element model-
ing of the aircraft components as plates, bars, and beams and the substructure-based structural
system solver allows for efficient parallel solution of the structural equations.

A fluid-structure interface calculation is performed on the aircraft skin. Fluid forces cause struc-
tural loading, causing deflection, which in turn changes the fluid field. Since the fluid surface grid
does not, in general, correspond to the structural grid on the aircraft skin, an interpolatiodextrap-
olation scheme is used to transfer the fluid loads to the structural nodes and the structural deflec-
tions to the fluid grid. This work builds on earlier domain decomposition work by Byun and
Guruswamy(1-3). That work involved interfacing the Navier StokesEuler solver with structural
models. The structural models included a modal model and a parallel finite element model, using

a partitioning approach.

Approach

A high fidelity parallel finite element capability, ENSAERO-FE has been developed. Parallel
computations are performed on multiple substructures with an iterative scheme used to calculate
the boundary values. A standard finite element package, in this case NASTRANKOSMIC, is
used as a preprocessor to generate the substructure stiffness matrices. The new parallel code
solves the system of equations. Figure 1 shows how the structural solution is calculated in
parallel.

i

The interactive parallel solution of the finite element system is strongly based on that proposed by
Carter, et al(ref 5). It uses a preconditioned conjugate gradient method. That scheme has been
adapted to run on the IBM SP-2 and the SGI Origin 2000 , Ames Research Center using the MPI
for interprocess communication.

To use this scheme, the full structure is broken into substructures. The finite element stiffness
matrices are assembled for each substructure, but never for the full structure. The use of connec-
tivity information allows data to be exchanged about nodes that are shared between two or more
substructures. This method has been shown to be scalable and efficient(ref. 5) .

Dynamic structural analysis is performed using the Newmark (constant average accelleration)
method. A linear accelleration method is also available. This method converts the dynamic system
of equations into a pseudo-static system than can be solved by the same core parallel solver.

ENSAEROJX is dependent on an external code to generate the substructure stiffness matrices.
As this is a one time operation for linear structures, there is little to be gained by parallelizing it.
And there is no need to go to the effort and expense of duplicating standard codes that are readily
available. In thiscase, NASTRAN/COSMIC(ref. 5)was used as a front end, although any similar
code should be easily adaptable. This also allows access to the full range of standard preprocess-
ing and CAD tools designed for NASTRAN, as well as use of the supply of existing data decks.

Once the user has used the front end program to create the substructure stiffness matrices, he or
she builds input files describing the substructure connectivity and boundary conditions. Depend-
ing on the case being run, input load file may also be set up or the loads may be calculated by an
attached aerodynamic code. In this case, ENSAERO-MPI(ref. 6) is used.

ENSAERO-MPI is an aeroelastic analysis package which couples the Reynolds averaged thin-
layer Navier-Stokes equations with structural analysis. Its existing, limited, low fidelity simple
finite element or modal structural capabilities were replaced by the new finite element code.
ENSAERO’s internal interpolatiodextrapolation capability was adapted to exchange the aircraft
aeroelastic data between the two disciplines.

+

The codes for the two disciplines are run in parallel. ENSAERO uses one processor per aerody-
namic zone. ENSAERO-FE similarly uses one processor per substructure. The number of proces-

.

3

sors used varies substantially from problem to problem, depending on problem size and desired
performance. For this work, the aerodynamic code has typically used around ten processors and
the structural code around five. The MPI library is used for communication between like codes as
well as across disciplines. NASA Ames’ MPIRUN library is used to manage processor allocation
and some communications set-up chores.

Interpolatiodextrapolation of loads and deflections is performed using an intermediary interface
grid. This interface grid is made of the structural skin elements (internal structural elements such
as spars are ignored). These skin elements are converted to triangular interface elements for ease
of interpolation. A search algorithm locates fluid grid points that fall within each triangular inter-
face element and computes the appropriate bilinear interpolation coefficients. Figure 2 illustrates
the matching of the two domain grids. Very dense fluid grids near the wing tip and at wing mid
span (near a control surface) result in a large number of fluid points per interface triangle in these
regions.

Validation

The code has been validated for a variety of problems ranging from simple to complex. This is
discussed in reference 7. A typical converged aeroelastic result is illustrated in figure 3.

References

1. Byun, C.; and Guruswamy, G. P.: Wing-Body Aeroelasticity on Parallel Computers. AZAA
Journal, vol. 33, no. 2, Mar.-Apr. 1996, pp. 421428.

2. Guruswamy, G. P.: ENSAERO - A Multidisciplinary Program for Fluidstructural Interaction
Studies of Aerospace Vehicles. Computing Systems Engineering, vol. 1, nos. 2-4, 1990, pp.237-
256.

3. Byun, C.; and Guruswamy, G. P.: Aeroelastic Computations on Wing-Body-Control Configu-
rations on Parallel Computers. A I M Paper 96- 1389, April 1996.

4. NASTRAN User’s Manual. NASA SP-222(08), June 1986.

5. Carter, W. T.; Sham, T. L.; and Law, K. H.: A Parallel Finite Element Method and its Protoype
Implementation on a Hypercube. Computers & Structures, vol. 3 1 , no. 6., 1989, pp. 921-934.

6. Byun, C.; and Guruswamy, G. P.: ENSAERO-MPI Parallel Multi-Zonal Version User’s Guide.
1996.

7. Eldred, L. B.; Byun, C.; and Guruswamy, G.P.: Integration of High Fidelity Structural Analy-
sis into Parallel Multidisciplinary Aircraft Analysis. 39th AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics and Materials Conference, Long Beach, CA, AIAA 98-2075, April,
1998.

Aerodynamic Loads

Internal DeRectiots

Solution a1 Boundaries

mal Deflections

-L

Figure 1 Solution flow chart.

Figure 2 Fluidstructure grid mapping.

Figure 3 Typical aeroelastic solution.

F

4

User’s Manual

.

1. Introduction

ENSAERO-FE is the parallel substructure-based finite element solution code. It
can run as a standalone code or be used as a structural module for ENSAERO. It
uses NASTRAN created stiffness matrices for each substructure, and iteratively
solves for the structural deflections. Loads and deflections are exchanged with the
EXSAERO-F fluids module via MPI.

The general approach used in the code is to break the aircraft structure into multi-
ple substructures. This is very similar to breaking the fluid analysis domain into
multiple zones. Each substrcture is assigned to a single computational node. That
node solves for the deflections of its substructure and communicates with the
other nodes to determine the deflections of the shared (also called boundary or
external) nodes.

Each substructure is modeled in NASTRAN using its full library of elements.
NASTRAN is instructed to generate the stiffness, mass, and node ordering matri-
ces for each substructure. Additional data files describing how the substructures
are connected are created by the user.

Additional input files are required to set up the fluidlstructure interaction. The first
set of files indicates which portions of the structural model are to exchange data
with the fluids module (i.e. the aircraft skin). A file contains various problem
scales: dynamic pressure, reference length, and freestream velocity. Another indi-
cates how the structural grid matches up to the fluid zones.

2 NASTRAN Setup

Node 133
x = 5

Z = 50
y = 12

Node 132
x = 5
y = 6
~ = 5 0

Node 140
x = 10

Z=50
y= 12

Node 147
x = 10
y = 6
Z=50

NASTRAN is used to create the stiffness (and mass) matrices for each
substructure. Its complete library of linear elements is available.

In order for the code to keep track of the internal/ external node
bookkeeping necessary for this analysis, NASTRAN must not rearrange
the stiffness matrices or apply boundary conditions to the matrices. In other
words, NASTRA”s “Bandit” routine must be turned off.

The following NASTRAN executive deck is used to save the unaltered
stiffness and mass matrices, as well as some bookkeeping information:

NASTRAN BANDIT=-1
ID Parallel analysis
APP DISP
SOL MODES
TIME 1
ALTER 42
OUTPUT5 KGG,,,,//-1/15//1 $ Output stiffness matrix
OUTPUT5 MGG,,,,//-1/16//1 $ Output mass matrix
OUTPUT5 GPL,,,,//-1/17//1 $ Output grid ordering vector

ENDALTER
CEND

JUMP FINIS $ stop

6

.

To use NASTRAN as an ENSAERO-FE front end, create numbered NAS-
TRAN input files “O.dat”, “1 .dat”, etc. for each seperate substructure.
NASTRA”s invocation script must be modified to assign file names to the
unit numbers specified in the previous executive control deck. Modifying
the script to contain the following definitions will accomplish this:

set probname = $1
set ftOS=$probname.dat
set ft06=$probname.out
set ftlS=k.$probname
set ftl6=m.$probname
set ftl7=o.$probname

Use the ENSAERO-FE version of the 1.- -STR
section 11) by running it for each input file:

ivocation script(see

nastran 0
nastran 1
etc.

This will generate files containing the stiffness matrices, “k.O”, etc., the
mass matrices, “m.O”, etc. and the ordering information, “0.0, etc.

The “0.N file allows the user to use the same arbitrary node numbering
scheme that is used in the NASTRAN input decks in the rest of the
ENSAERO-FE input files. The code uses this file to connect a given node
number to the rows and columns of the stiffnesdmass matrix that contain
the node’s degrees of freedom.

7

3 Input Files

Preprocessor
or

ENSA ERO- FE

NASTRAN \
\ -

There are quite a number of input files necessary to run this code. An
external preprocessor code is used to perform all of the once-per-configura-
tion chores in advance of using expensive parallel compuation time. At this
point, use of the preprocessor is optional. The main code looks first for the
preprocessed data files. If they are not found, it will read or try to read the
various user input and NASTRAN generated files itself. Use of the prepro-
cessor is recommended, and described in the next section. Either way, the
input data files are the same.

In most cases, there must be copies of the input files corresponding to each
substructure in the problem. The letter “N’ will be used in place of the
substructure number for these types of files (i.e. the filename “bc.”’ indi-
cates there should be a “bc.O”, “bc.l”, etc.). There are a few input files that
are for the entire problem. Such files end in “.dat”.

Overview

The following data files are required to run this code:

k.N
o . N
bc.N
c.N

- substructure stiffness matrix
- substructure ordering vector
- boundary condition file
- skin connectivity file

8

s.N - skin grid file
bnode . dat - substructure attachement file
scales-dat - aerodynamic scales
i d s m . dat - fluid/structure connectivity
l.N - load file (standalone only,

optional)

Fluids Inputs

This code does not read any of the fluids module’s input files. But, they
have to be correctly setup to allow the combined system to work correctly.
See the ENSAERO-MPI documentation for details.

Finite Element Data - k.N, m.N, d.N, o.N

See the previous section on NASTRAN use for instructions on creating
these four files. “k.N” contains the substructure stiffness matrix, “m.”
contains the substnctwe mass matrix, “d.W cor,+Ans ~ ! e subs+uc~~:e
damping matrix and “0.” contains the substructure node ordering vector.
The mass and damping matrix files are required only for dynamic structural
problems (and are set to zero if not supplied). The NASTRAN input decks
“N.dat” are not required for this code.

Boundary Conditions - bc.N

The user must set up boundary condition (bc.N) files for each substructure.
Most of the user-input files for ENSAERO-FE follow a standard format:
the first line is the number of records, and each subsequent line is a record.
A boundary condition file must exist for each substructure, even if there are
no conditions to be enforced. In that case, the file should contain a single
zero, “O”, entry.

Each boundary condition record consists of a node number and a list of
degrees of freedom to set to zero. These degrees of freedom are specified in
NASTRAN format; i.e., 1-3 are the translational degrees of freedom, and
4-6 are the rotations. The node numbers are the ones specified in the corre-
sponding NASTRAN input deck.

At this point, boundary conditions have to be configured manually. At
some point, these could become at least partially automated by parsing the
NASTRAN decks for the appropriate information.

9

Example bc file

2
1 ,123456
2 , 23456

In this case, node 1 is completely fixed and node 2 is only free to move in
the x direction.

Aircraft Skin - c.N, s.N

In order for the loading and deflection data to be exchanged with the fluids
code, the user must indicate what portions of the aircraft are on the “skin”.
Only nodes and elements that are specified as skin are used to exchange
loaadeflection data with the fluids. This specification of the aircraft skin is
done by editing the input NASTRAN substructure data file into two addi-
tional files indicating the grid and grid connectivity of the aircraft skin.

The “c.N” file contains the skin grid connectivity information. This is in
the form of NASTRAN element cards. Supported rectangular elements are
CSHEAR, CTWIST, CQDMEM”, QDPCT, and CQUAD*. Supported tri-
angular elements are CRTRPLT, CTRIA”, CTRIM6, CTRMEM, and CTR-
PLT. As with the other input files for this program, the first line contains
the number of records in the file. This is followed by a comma, and a “1” or
a “2” indicating if the cards use one or two lines.

Partial example c.Nfi1e

136,l
CQUAD4 1 3 1 2 11 10
CQUAD4 2 3 2 3 12 11
. .

The ‘3.N” file file contains the skin grid information. This is in the form of
NASTRAN “GRID” cards. Again, the first line of the file specifies the
number of records, followed by a comma, and then a “1” or a “2” to indi-
cate if the cards use single or double precision.

Partial example s.N$le

162,2
GRID* 1
‘GRD 1 0.15648150444
. . .

0.00000000000 0.00000000000QGRD 1

c

Substructure Attachment - bn0de .a

The substructure attachment file “bnode.dat” is a single file for the entire
structure. It indicates which nodes of each subtructure are attached to
which of each other substructure. There is no requirement that correspond-
ing nodes be numbered identically in each substructure; this file takes care
of that detail.

This file starts with a line indicating the number of records. Each record is
two lines long. The first line is a count of the number of substructures listed
in the second line. The second line is a list of paired numbers indicating the
substructure and its node number that is to be matched to the other nodes in
the list.

Example bnode.dat $le
2
2
0,37,1,37
4
0,21,1,21,4,21,5,25

This file indicates that there are two nodes that are shared between proces-
sors. Node 37 on processor 0 is the same as node 37 on processor 1 and
Node 21 is the same on processors 0,1, and 4 and corresponds also to node
25 on processor 5. Again, there is no requirement that corresponding nodes
be called the same thing; between this file and the “o.N file, the code can
figure out where things go.

Aerodynamic Scales - scales.dat

The “scales.dat” file contains problem scaling constants used by the fluids
code. The three values are a length scale “phylen”, the dynamic pressure
“dynpre” and the free stream velocity “frevel”. These values are used to
convert the pressure coefficients supplied by the aerodynamic code into
nodal forces. This file replaces the “modals.dat” file specified in the
ENSAERO documentation for the modal structural code.

Example scales.dat$le

31.2963
0.5
10000.0

phylen
dVnpre
frevel

11

Fluid/Structure Grid Connectivity - idsm.dat or idsm. N

The “idsm.dat” or “idsm.N’ file(s) specifies the correpondences between
the structural grid and the fluids grid. The values specified in this file for
the structural skin are matched to the fluid grid sections with the same
value. The fluid grid is marked by the “idph” value in “fsintf.dat”.

Two different versions of this file are supported. The program automati-
cally detects which one the user has chosen (by attempting to open first
idsm.O, then idsm.dat).

The first type of file allows one idsm value per substructure. Thus, it con-
tains one line for each substructure. Since the number of substructures are
known to the code by the time it reads the idsm file, no linecount line is
necessary.

Example idsm.dat (type 1) j l e

1
0
0

The second type of file allows a different idsm value for each skin element,
but requires a file for each substructure, rather than a global file. Its format
is a line count header followed by pairs of element numbers and idsm val-
ues.

Important: For the moment, the element number is ignored by the code.
Instead the ordering is assumed to be the same as that of the c.N file.

Partial Example idsm.N (type 2) j l e

168
1
2
3
4

. . .

Load files - LN

Load files are read only by the preprocessor code and are used only when
the parallel code is run in stand-alone mode (i.e. no fluids) A record con-
tains a node number followed by six values which are the loads applied to

12

each of the six degrees of freedom at that node.

Note that even in stand-alone mode, the use of this file is optional. If it is
not present, the subroutine “applyload” is called instead to generate the
problem force vector.

Example l j l e

1
11,100.0,0.0,0.0,0.0,0.0,0.0
In this case, a load of 100.0 in the x direction is applied at node 1 1.

Restart files - fe-output (.Nand .&t)

The “fe-output.” and “fe-output.dat” files are used to restart the code
from a previously finished run. They are created by the code as part of its
final output. They are exactly the same format as the preprocessed input
files, and thus to continue from a previous run they should be renamed to
“fe-input” with the appropriate extensions. The code will read them just the
same as normally preprocessed data.

4 Preprocexe - Preprocessor

Preprocessor

NASTRAN

fe-input.dat .

/
User Input

The use of the preprocesor code “preproc.exe” is strongly recommended. It
performs all of the once-per-configuration setup computations such as gen-
erating the fluid/structure interface and compressing the stiffness matrix. It
is also the only way to access many recent additions to the code, such as
dynamic structural analysis.

The code should be run once in a directory containing all the required (and
desired optional) input files. It will generate a global input file “fe-
input.dat” and substructure input files “fe-input.” for each set of substruc-
ture inputs found.

The preprocessed data files are stored in the “StIFF” data format(see sec-
tion 12), described in this documentation. They are architecture and oper-
ating system independent.

Only the preprocessor output files (fe-input.*) need be present when the
main ENSAERO-FE code is run. It will automatically detect their presence
and use them. In this case, any old-format (k.N, etc.) input files are ignored.

Remember to rerun the preprocessor whenever the input data are changed.

5 Output Files

,

I ENSA ERO- FE r-* FAST grids

I .
Restart Jiles

A wide variety of output files are created by the program including plain
text and FAST plottable files for both the full structure and the component
substructures.

The “deflections.”’ files contain the plain text six degrees of freedom
deflections for each substructure and the corresponding input node number.

The “deflgrid.” files contain a FAST format grid file for the deflected sub-
structure skin. To load them in FAST, select “Grid”, “Formatted” and
“Unstructured”. The “SurferU” module must be used to plot the unstruc-
tured grid. This grid is made up of the interpolation triangles used to map
loads and deflections between fluids and structures.

“deflgrid-dat” contains a FAST format grid for the entire deflected struc-
tural skin.

The “deflgrid2.N” and “deflgrid2.dat” files contain a different version of
the same grid that is in the files without the “2”. This version of the file
allows the user to map a scalar onto the grid, a feature not normally avail-
able in a FAST unstructured grid. It does this by tripling the grid and con-
nectivity information. Once this is done, a color can be specified for each

15

skin triangle.

The “skingrid.N’, “skingrid.dat”, “skingrid2.N’ and “skingrid2.dat” follow
the same naming scheme as the “deflgrid” files. In this case, they contain
the undeflected skin grids in a FAST format for each substructure and for
the full structure.

The “fgrid.N’ files contain the merged fluid dynamics grids.

The files “fe-output.dat” and “fe-0utput.N’ contain the data necessary to
restart the code and continue from the last timestep of a completed run.
They are identical in format to the preprocessed “fe-input” files and only
need to be renamed in order to be used.

“fe-converge.dat” contains the history of the deflection of a single degree
of freedom. At this point, that degree of freedom must be configured inside
the source code.

16

6 Running stand-alone

ENSAERO-FE can be run as a stand-alone structural analysis code as well
as a module of ENSAERO-F.

The finite element code will run in stand-alone mode if either of the follow-
ing conditions is met:

1) The file “input/multid.dat” (an ENSAERO-F input file) does not exist.
2) The file “input/multid.dat” specifies no fluids codes are to be run.

In stand-alone mode the user has two choices for specifying the structural
loads. “1 . N” (the letter ell, not the number one) files can be used to spec-
ify static loading. The load input files must be present during preprocess-
ing. Load input is not supported directly by the main code.

The second option for loading is to modify the “applyload” subroutine. ,

Since the subroutine is called every time step, dynamic or nonlinear
loading is possible. Note that this subroutine is called only if no static load
files were found during preprocessing.

17

7 Dynamic Structural Analysis

._ e.5

ENSAERO-FE can perform dynamic structural analysis using the Newmark
(constant average accelleration) method. A linear accelleration method is also
supported. The method used may be changed by editing the parameters in the
“newmarkinit” subroutine found in sfrucf/dynamic.J

When run with the fluids code, ENSAERO-FE performs a dynamic analysis
when “itask” is set to 4 or 5. This analysis is identical for both itask settings. A
time step matching that used by the fluids is used.

When run standalone, the dynamic options are controlled by two lines in the
main routine, parstrucf.f , seen below. The logical variable “dynamicrun”
should be set to “.true.” or “.false.” and the time step size “deltime” should be
set as desired. Note that the Newmark method is unconditionally stable.

c Control f o r standalone dynamic structural analysis
c when run with fluids code, fluids inputs will
c overide these settings

dynamicrun=.false.
deltime=O.O

18

8 Restarting

ENSAERO- FE -
The program supports restarting if the user wishes to continue an analysis.
The previous run must have completed normally for this to work.

See the ENSAERO documentation for full details, but a very short sum-
mary appears below. Note that steps 1 and 2 are not required when running
in stand alone mode.

1) Edit “ensaero_f.dat”:
Change the “restart” variable to 1 or 2.
Change the “start” and “stop” timesteps to the new values

(ie., to restart a run that ran from time steps 1-50, change these to
51 and 100).

2) Rename or copy all “ restart.out-X-Y” files as “restart.dat-X-Y”.
These files contain the fluid solution.

And for the structures code:

3) Rename or copy “fe-output.dat” as “fe-input.dat”.

4) Rename or copy all “fe-output.” files as “fe-input.”.

19

9 Other Issues

This program is configured for medium sized problems. The program will
complain and stop if a user tries to run a problem too large for the PARAM-
ETERS it was compiled with. These are contained in “parsub.h” and are
well documented within that file if they need to be increased.

Relaxation of the structural response is supported in the “relaxscale” sub-
routine in struct/parsubsub.f. That routine returns a value used to scale the
computed structural perturbation based on the current loop value. This sup-
port is intended to damp out oscillations in the iteration history of static
aeroelastic solution of very flexible structures. It may be useful for other
purposes as well.

20

’.

Example Problems

~ - -
..:. .
..:, j ,:. . .

._ -. r . ,

A few example problems are included with the package for learning and testing
purposes. They are found in the examples subdirectory.

Flat Plate Problem: exumples/pZate

The flat plate problem can be used to test the stand alone capability of the code,
as well as scalability. A simple FORTRAN program is used to generate a flat
plate composed of as many QUAD4 elements as desired and broken into as
many substructures as desired.

The first step in setting up a problem is to edit the control.dut file.

Sample controLdut file

40
5 0
2
2
1.0
1.0
0.1
3.Oe6
0.30

elements in x direction
elements in y direction

substructure sections in x dir
substructure sections in y dir
x dimension, length
y dimension, length
z dimenzion, thickness
e, Young‘s modulus
nu, Poisson’s ratio

21

1.0
1 2 3 4 5 6
6
6
6
6

rho, density
bottom edge bound. cond.
Left edge BC
top edge BC
right edge BC
interior BC (zero if none)

The comments on the right should make the file fairly self explanatory. The
boundary condition specifications are NASTRAN style and list which
degrees of freedom, 1-6, are constrained to be zero on each edge and in the
interior.

The next step is to edit the files heud.dut and tuil.dut. These two files will
be copied to the top and bottom of the generated bulk data decks. The
heud.dut file should contain the desired NASTRAN executive and case
control cards. The tuiZ.dut may just contain an “ENDDATA” card.

After editing these files as desired, run plate. This will generate the desired
number of NASTRAN bulk data decks as well as boundary condition and
connectivity files. Next, run either the script cut-em or cut-em2 (use cut-
em2 if you have 11 or more substructures) to concatenate the header and
footer files with the bulk data files.

You will now have numbered NASTRAN input decks for each plate sub-
structure, e g , O.dut. Run the ALTERed NASTRAN on each of these input
files to generate the stiffness and ordering files.

Create loading files, Z.N, as desired, then run the preprocessor and finally
the main code.

Arrow Wina - Body problem: exumpleduwb

Complete input decks for both stand alone and aeroelastic analysis of a
simple arrow wingbody aircraft are supplied. This model is the basis for
all of the aircraft figures in this documentation and uses eight fluids zones
and three substructures.

10 File Naming Conventions

“N’ is the substructure/parallel processor number
(NAST) indicates a file generated by a NASTRAN run
(USER) indicates a user generated file
(ENSAERO-FE) indicates a file generated by a previous run

Input files (for preprocessor)
N.dat - NASTRAN input deck (USER)
N.out - NASTRAN run output (NAST)
bc .N - Boundary condition file (USER)
c .N - Skin connectivity file (USER
k.N - Stiffness matrix (NAST
m.N - Mass matrix (NAST
d.N - Damping matrix (NAST
o .N - Node ordering file (NAST
s .N - Skin grid file (NAST
bnode-dat - Substructure attachment file (USER
scales-dat- Aerodynamic scales (USER)

idsm.dat - Fluid/structure grid connect (USER)
idsm.N - Fluid/structure grid connect (USER)

pick =et

Preprocessor Output Files
fe-input.dat - global (skin grid, etc.)
fe-input.N - local (stiffness matrix, etc.)

Output Files
def1ections.N - text deflections
def1grid.N - FAST substucture deflected skin grid
deflgrid.dat - FAST full structure deflected skin grid
deflgrid2.N - tripled FAST substructure deflected skin grid
deflgrid2.dat - tripled FAST full structure deflected skin grid
skingrid.N - FAST substructure undeflected skin grid
skingrid-dat - FAST full structure undeflected skin grid
skingrid2.N - tripled FAST substructure undeflected skin grid
skingrid2.dat - tripled FAST full structure undeflected skin grid
fgrid. N - merged fluids grids
fe-output-dat - restart file (global data)
fe-0utput.N - restart file (individual substructure data)
fe-converge-dat - convergence history of a single DOF
(standard output) - diagnostics, warnings, errors, and summary’

23

11 NASTRAN invocation script

The following script is used to invoke NASTRAN. The script specifies the file
names for all the input and output files:

#!/bin/csh
streamlined, non-interactive NASTRAN invoker
unalias rm
#clear
set rfdir=$HOME/nastran/rf
set nasexec=$HOME/bin/nastrn.exe
set naschk=$HOME/bin/chkfil.exe
set probname = $1
echo ' '

if (Sprobname == ") then
echo ' NASTRAN '
echo ' '
echo -n 'Please give problem id for designation of files ===> '
set probname = $<
endi f

set ftOl=$probname.pun
set dbmem=12000000
set ocmem=2000000
set ftOl=none
set ft04=none
set ft03=$probname.log
set ft05=$probname
if (! -e $ft05) then

endi f
if (! -e $ft05) then

endi f
if we can't find the input file, reset to what was given
if (! -e $ft05) then

endi f
set ft06=$probname.out
set ft08=none
set ftll=$probname.outll
set ftll=none
set plt2=none
set script=$probname.cmd
set nasscr=$cwd/temp$$
set ftl2=none
set ftl5=k.$probname
set ftl6=m.$probname
set ftl7=o.$probname

set ftOS=$probname.inp

set ftOS=$probname.dat

set ftOS=$probname

24

#set ftl8=$probname.coord
set ftl8=none
set sofl=none
set sofl=$probname.sof
set sof2=none
set sftl2=
set nptp=$probname.nptp
set optp=none

if (! -e $ft05) then
else
if (-e nogoodl 1 then
rm nogoodl
endi f
if (-e nogood2) then
rm nogood2
endi f
if (-e nogood3) then
rm nogood3
endi f
Snaschk < $ft05

if (-e nogoodl 1 then
set ft04=$probname.dic
rm nogoodl
endi f
if (-e nogood2 1 then
set plt2=$probname.plt
rm nogood2
endi f
if (-e nogood3) then
set f t04=$probname. dic
set plt2=$probname.plt
rm nogood3
endi f

endi f
if (-e $script) then
rm $script
endi f
touch $script
echo '#/bin/csh' >> $script
echo ' unalias rm ' >> $script
echo 'if (-d ' Snasscr') then' >> $script
echo 'rm -r 'Snasscr >> $script
echo 'endif' >> $script
echo 'mkdir 'Snasscr >> $script
echo 'if (-e '$nptp ') then'>> $script
echo 'nn '$nptp >> $script
echo 'endif' >> $script
echo 'if (-e '$ft03 ') then'>> $script
echo 'rm '$ft03 >> $script
echo 'endif' >> $script
echo 'if (-e '$ftOl ') then'>> $script
echo 'rm '$ftOl >> $script
echo 'endif' >> $script
echo 'if (-e '$ft04 ') then'>> $script

25

echo 'rm '$ft04 >> $script
echo 'endif' >> $script
echo 'if (-e '$ft06 ') then'>> $script
echo 'rm '$ft06 >> $script
echo 'endif' >> $script
echo 'if (-e '$plt2 ') then'>> $script
echo 'rm '$plt2 >> $script
echo 'rm '$ft04 >> $script
echo 'endif' >> $script
echo 'if (-e '$ft06 ') then'>> $script
echo 'rm 'Sft06 >> $script
echo 'endif' >> $script
echo 'if (-e '$plt2 ') then'>> $script
echo 'rm '$plt2 >> $script
echo 'endif' >> $script
echo ' env NPTPNM='$nptp ' \ ' >> $script
echo ' PLTNM='$plt2 ' DICTNM='$ft04 ' PUNCHNM='$ftOl ' \ ' >> $script
echo ' FTNll='$ftll \ FTN12='$ft12 ' DIRCTY='$nasscr I \ ' >> $script
echo ' LOGNM='$ft03 ' OPTPNM='$optp ' RFDIR='$rfdir ' \ ' >> $script
echo ' SOFl='$sofl ' SOF2='$sof2 ' \ I >> $script
echo ' FTN14=none FTNl7=none FTN18=none FTN19=none FTN2O=none \ ' >> $script
echo ' FTN15='$ftl5 \ FTN16='$ft16 ' \ ' >> $script
echo ' FTN17='$ft17 ' FTN18='$ftl8 ' \ ' >> $script
echo ' FTN21=none FTN13=none \ ' >> $script
echo ' DBMEM='$dbmem ' OCMEM='$ocmem ' \ ' >> $script
echo Snasexec' < '$ft05' >'$ft06 >> $script
echo 'rm -r 'Snasscr >> $script
echo 'if (-e none) then'>> $script
echo 'rm none' >> $script
echo 'endif' >> $script
echo 'echo == NASTRAN - " '$probname' " done = = I >> $script
chmod +x $script
$cwd/$script &

26

12 Stl FF format speciJication

StJFF
“STructural Interchange File Format”

File Specification

Introduction

“StlFF” is a format for exchange of structural data (stiffness matrices, mass
matrices, etc.). It is intended to be platform independent and extendable to
include new data types without breaking existing codes. Any type or com-
bination of types of data may be stored in a StIFF file.

Inspiration

Tilt: SiIFF format is conceptudiy simiiar to the im and ii+ image file
formats. Both achieve platform independence through the use of data
blocks.

The formatting approach used is block oriented. Each block starts with a
header consisting of the block name and the block length. The allows a
reading program to skip over unneeded or unfamiliar blocks. In fact, a
reading program must do this for things to work well.

While the contents of each block type will be different, in general, each
block will have a secondary header specifying the format of the actual data
in the block, so that the data may be read regardless of the bit format of the
writing and reading machines.

This standard is also defined to be friendly to the limited I/O capability of
the FORTRAN programming language. Most of the structural codes of
interest are written in FORTRAN rather than a language with more power-
ful I/O capabilities. Thus, data suchas block lengths are given in units of
text lines rather than bytes so that a FORTRAN reader can loop over an
empty ‘read()’ statement to skip past a block.

Structure

A StIFF format file consists of three parts: header, any number of blocks,
and a tail. While the blocks can appear in any order, for efficiency sake, the
writer program should write more general blocks first and more specific

27

blocks last. For instance, a stiffness matrix block should probably go before a
mass matrix block. This is because the stiffness matrix is required for both
static and dynamic analyses, but the mass matrix is needed only for
dynamics. Thus, in some cases, the reader code can find all it needs early and
stop reading.

The header and tail blocks can be viewed as special types of block that (at
least currently) contain no data sections. Since there are other reasons for
no-datablocks, such as option flags, and since the header and tail blocks
definition may change in some future version of this document, all blocks
will have a line length value, including blocks of length zero. Thus, any
StIFF block will have the structure:

BLOCKNAME <number of data lines or zero>

<specified number of data lines of data>

In general, for ease of reading, block names will be all uppercase (the StIFF
header is an exception). Future block type definitions may be mixed or
lowercase if needed for clarity. Writing codes should take care to match the
case of the block name in the documentation to avoid reader code parsing
problems. Block names are limited to 10 characters in length.

Block Definitions

I> Headermail blocks

Block: StIFF n

The StIFF header block consists of the five-character block named “StIFF”.
(upper and lower) case is important, allowing the header to be used as a
“magic cookie” to determine the type of file.
This block contains no data, but reader code should still check the line count
variable and skip lines if required. Thus, a writer code could put some sort of
comment ,in the header, although the use of a text block would be better for
this purpose.

Block: END n

28

The END tail block serves as the last block in a StFF file. Its inclusion
allows the reader code to stop before getting an end-of-file error. As with the
header block it should contain no data.

II> Text blocks

Blocks: COMMENT, TEXT, TlTLE
These block types are all designed to allow the inclusion of lines of raw text.
These may be ignored or read and printed as desired by the reader code. The
different types of block names are provided so that different behaviors can be
used.

It is sugested that COMMENT blocks be used for data documentation and
ignored by reader codes and TITLE blocks be read and printed in program
output.

I I b Generic Data blocks

There is an unlimited number of possible data blocks. A few generic ones are
specified below. Others may be added as desired; reader codes should be
designed to safely skip over any blocks that they do not understand. To
reduce conflicts, however, application specific data should use a unique pre-
fix. For instance, a block specifying options for ENSAERO-FE might be
named “ENSFE-OFT”.

Blocks: STIFF, MASS, DAMP, SQ-MATRIX
There are three parts to a square matrix block. The first two lines are valid
FORTRAN FORMAT specifications for reading first the matrix numerical
data, then the pivot or index data. Thus, the first will be for real numbers and
the second for integers. They should have parentheses around them. Exam-
ple: “(F12.6)”. For formats without pivot or index data, the second FORMAT
specification is still required, but is ignored.

The second part specifies the storage format and the number of elements to
be read. Depending on the storage format used, the number of fields on this
line may vary.

The third part of the block is the actual matrix data that are read according to
the instructions in the first two parts.

Storage Format: RAW n
The RAW storage format stores the entire matrix explicitly. The single data
field on the format line indicates the dimension of the square matrix. The
actual data are stored across by row, Le., a(1 ,l), a(1,2) ,..., a(1 ,n), a(2,l) ,...

Storage Format: TFU n

29

The TRI storage format stores the upper triangular part of a symmetric
matrix. The single data field is the dimension of the full matrix. The actual
data are stored across by row, Le., a(1 ,l), a(1,2) ,..., a(l,n), a(2,2) ,...

Storage Format: NAST
The NAST storage format uses a NASTRAN style compression scheme to
store a full matrix.

Storage Format: INV n
The inverse of the matrix is stored in RAW format. The data field indicates
the dimension of the matrix.

Storage Format: FACTN (FACT1, FACT2, ...) n
A factored version of the matrix is stored. The data field indicates the dimen-
sion of the matrix.

Storage Format: SKY na
The SKY storage format uses a Skyline storage scheme to store the upper tri-
angular portion of a symmetric matrix. “na”, the length (number of entries,
not number of lines!) of the skyline data vector is specified on the format
line. The integer pointer vector “maxa” is provided after the skyline stored
matrix. “maxa” is preceded by its length “nma”. Thus, a skyline store matrix
would look like:

SKY na

(lines of matrix data)

m a

(lines of maxa data)

Blocks: LOAD, DEFLECT, ORDER, VECTOR
The vector storage blocks consist of three parts. The first is a storage format
block, like the first part of the square matrix block type. The first line should
contain a valid FORTRAN FORMAT specification for reading the vector
data. It should be contained in parentheses. The second part is a storage
scheme specifier. At this point only “RAW’ is specified, but others may be
added as needed. The third part is the actual data.

Storage Format: RAW n
The vector is stored explicitly and is of length “n”.

Blocks: VECTOR2, VECTOR3, GRID

30

These multidimensional vector blocks work exactly like a one dimensional
vector block, except with double or triple the data. The length “n” in the
RAW specifier is the length of the vector. This is followed by 2 or 3 sets of
data of length “n”. For instance, 10 grid points would be stored as:

RAW 10
xl x2 x3 .. . x10
yl y2 y3 .. . y10
zl 22 23 ... 210

Of course, the number of values on a single line depends on the FORTRAN
FORMAT used. Generally, however, the transition between components will
start on a new line.

Blocks: IVECTOR, ENSFE-IBCS, ENSFE-IBNO, ENSFE-MAPG

Identical to the VECTOR format, but stores integer values.

B~OC~CS: MATRIX, ENSFE-KIE

This block is for storing a nonsquare matrix. It is very similar to the other
matrix and vector storage blocks. Use the SQ-MATRWRAW definition but
with two data fields on the storage scheme line:

The matrix is stored explicitly and is of dimension n x m
Storage Format: RAW n m

--- Example StIFF file ---
StIFF 0
COMMENT 2
This is comment line 1
This is comment line 2
VECTOR 4
(F7.2)
RAW 2
1234.56
9876.54
E N D 0

31

13 Utility Programs
A few small, useful utility programs are included in the util subdirectory.

Autobnode

“Autobnode” is a utility for use with manually substructured data files
(such as when Patran is used to chop up an aircraft). Its main purpose is to
generate the “bnode.dut” file, but it also performs a variety of validity
checks on the substructured data.

To work, the program needs access to the full structure NASTRAN file as
well as to all of the substructure NASTRAN files. A file called “jk” is
used to control the code and tell it which files are to be used. The first line
gives the file name for the full structure file. The second line gives the num-
ber of substructure files. The file names for the substructure data files are
given one per line after that.

Example “jiZes” file

full .dat
3
w i n g . da t
fuselage.dat
tail. dat

The bnodedut file is generated by assuming that consistant node number-
ing is used between the various substructure files (this is not a requirement
of the main code). Thus, any nodes with the same ID number are assumed
to be the same. And any that appear in more than one substructure are then
listed in the bnode.dat file.

In addition, the following validity checks are performed:
All grid points in full file must be in at least one substructure
All substructure grid points must appear in full file
All elements must appear in full file and in exactly one substructure
All grid points specified by elements in a substructure appear in that
substructure
No unused grid points appear in a substructure

Should any of these checks fail, a warning will be issued, and details will
be written to a file called uutobnode.error.

The size problem allowed by the program can be controlled by editing the
autobnode. h header file.

“Autosub” is an automatic substructuring code. It reads a NASTRAN input
deck and generates somewhat equally sized substructures from it. It should
be used with care, however, as it isn’t very bright. Basically, it sorts all the
input grid points by a single one of their coordinates (x, y, or z), assigning
the first N points to the first substucture, etc. Thus, it simply slices the
structure up along one axis.

Autosub is written in C. Before using it, the user will need to configure it
for the problem at hand. The #define statements at the top of the code
will need to be modified to reflect the size of the problem. Also, the desired
slicing direction needs to be set in the “indexr” call.

For aircraft applications, this code is best used after some manual substruc-
turing. For a full aircraft, the engineer might manually cut the structure into
wing, fuselage, and eppenage substructures. The=, autos& cwld be used
to slice the wing in the “y” direction, the fuselage in the “x” direction, and
the eppenage in the “z” direction. In such a case, the #define for “ibase”
can be used to generate appropriate file numbers.

Autosub also writes some of the preprocessor input files such as
“bnode.dat”. Such files may need to be manually edited if the code is only
slicing part of a larger structure (as in the example above).

“E12Nas” is a program to convert Elfini structural data to NASTRAN data.

Usage

“el2nas” is simple to use. It is invoked by typing:

elanas [elfini-file nastran-file]

The default input file name is “elfini.dat”. Similarly, the default output
file name is “nastran.dat”. If other file names are desired, they may be spec-
ified on the command line, but both must be given.

Limitations

There are a number of limitations in the code due to differences in the
way the two codes work and limitations in the available test decks. The sec-
ond is obvious: if a certain Elfini input type or option in the demo deck(s)

33‘

used to develop the code are not seen, that option is not supported.

Shear and Bending of Composite Plates

The test Elfini desks used to develop the code include composite plates
with either no bending stiffness or stiffness only in shear. There are no
NASTRAN elements that support this combination. (The CSHEAR ele-
ment, for instance, requires an isotropic material.) The converter models
these plates as full composite QUAD4 plates.

Solid Orthotropic Elements

The test Elfini decks contain a variety of solid elements with orthotropic
material properties. Only the hexahedral NASTRAN solid element allows
this type of material. The solid wedge and tetrahedral elements require iso-
tropic materials. For these cases, the converter models the elements using
an approximate isotropic equivalent.

Form Approved
REPORT DOCUMENTATION PAGE I OMB NO. 0704-0188

14. SUBJECT TERMS

ENSAERO, NASTRAN, Parallel computers

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

I
ublic reporting burden lor this collection 01 inlormation is estimated to average 1 hour Per response. including the time lor reviewing instructions. searching existing data sources,
ithering and maintaining the data needed, and completing and reviewing the COlleCtiOn of information Send comments regarding this burden estimate or any other aspect 01 this
illection of information. including suggestions lor reducing this burden. to Washington Headquarters Services. Directorate lor inlormation Operations and Reports, 1215 Jelferson
avis Highway. Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

AGENCY USE ONLY (Leave blank) 12. REPORT DATE I 3. REPORT TYPE AND DATES COVERED

15. NUMBER OF PAGES

39

A03
16. PRICE CODE

20. LIMITATION OF ABSTRAC

I Month 1999 I Technical Memorandum - _ _ . ~ . ~ ~ ~

I

TITLE AND SUBTITLE

User's Guide for ENSAERO-FE Parallel Finite Element Solver

I AUTHOR(S)

Lloyd B. Eldred and Guru P. Guruswamy

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center
Moffett Field, CA 94035-1000

. SPONSORlNGlMONlTORlNG AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

509- 10- 1 1

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-99VOO2 1

10. SPONSORlNGlMONlTORlNG
AGENCY REPORT NUMBER

NASA/TM-1999-20878 1

1. SUPPLEMENTARY NOTES
Point of Contact: Guru P. Guruswamy, Ames Research Center, MS 258-1, Moffett Field, CA 94035-1000

(650) 604-6329

2a. DlSTRlBUTlONlAVAlLABlLlTY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 08 Distribution: Standard
Availability: NASA CAS1 (301) 621-0390

I

3. ABSTRACT (Msxlmum 200 words)

A high fidelity parallel static structural analysis capability is created and interfaced to the
multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces
ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more
accurately modeled using the new finite element capability. Parallel computation is performed by breaking
the full structure into multiple substructures. This approach is conceptually similar to ENSAEROs
multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element
equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its
full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the
stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conju-
gate gradient method to solve the global structural equations for the substructure boundary nodes.

